A Comparison of Fundamental Noise in Kinetic Inductance Detectors and Transition Edge Sensors for Millimeter-wave Applications
ثبت نشده
چکیده
Kinetic inductance detectors (KIDs) show promise as a competitive technology for astronomical observations over a wide range of wavelengths. We are interested in comparing the fundamental limitations to the sensitivity of KIDs with that of transition edge sensors (TESs) at millimeter wavelengths, specifically over the wavelengths required for studies of the Cosmic Microwave Background (CMB). We calculate the total fundamental noise arising from optical and thermal excitations in TESs and KIDs for a variety of bath temperatures and optical loading scenarios for applications at millimeter wavelengths. Special consideration is given to the case of ground-based observations of 100 GHz radiation with a 100 mK bath temperature, conditions consistent with the planned second module of the QUBIC telescope, a CMB instrument [1]. Under these conditions, a titanium nitride KID with optimized critical temperature pays a few percent noise penalty compared to a typical optimized TES.
منابع مشابه
Superconducting Microstrip-Fed Antenna Coupled to a Microwave Kinetic Inductance Detector
A proper antenna to couple to a microstrip Microwave Kinetic Inductance Detector (MKID) is designed and simulated. A twin-slot microstrip-fed inline antenna is designed for frequency band of 600-720~GHz integrated with an elliptical lens and coupled to the MKID. A systematic design procedure for design of such antenna with microstrip inline feeding is presented. Whole structure of lens and twin...
متن کاملDesign and performance of dual-polarization lumped-element kinetic inductance detectors for millimeter-wave polarimetry
Aims. Lumped-element kinetic inductance detectors (LEKIDs) are an attractive technology for millimeter-wave observations that require large arrays of extremely low-noise detectors. We designed, fabricated and characterized 64-element (128 LEKID) arrays of horn-coupled, dual-polarization LEKIDs optimized for ground-based CMB polarimetry. Our devices are sensitive to two orthogonal polarizations ...
متن کاملHighly Selective Lowpass Filter with Wide Stopband in Suspended Stripline Technology for Millimeter-wave Diplexer Applications
This paper presents a low loss and high selective lowpass filter which is implemented using suspended stripline (SSL) technology. The proposed structure is comprised of a 13th order generalized Chebyshev lowpass filter which enjoys integrated waveguide-to-SSL transitions. This filter is designed and fabricated to be used as lowpass channel of a U-band diplexer employed in frontend of a U-band d...
متن کاملPhoton noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors
with horn-coupled, aluminum lumped-element kinetic inductance detectors D. Flanigan, a) H. McCarrick, G. Jones, B. R. Johnson, P. Ade, D. Araujo, K. Bradford, R. Cantor, G. Che, P. Day, S. Doyle, C. B. Kjellstrand, H. Leduc, M. Limon, V. Luu, P. Mauskopf, 3, 5 A. Miller, T. Mroczkowski, C. Tucker, and J. Zmuidzinas 8 1)Department of Physics, Columbia University, New York, NY 10027, USA 2)School...
متن کاملA readout for large arrays of microwave kinetic inductance detectors.
Microwave kinetic inductance detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing el...
متن کامل